Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9.
نویسندگان
چکیده
Experimental and theoretical double-mutant cycles have been used to investigate a salt bridge in the N-terminal domain of the protein L9. Aspartic acid 23 is the only acidic residue involved in a well-defined pairwise interaction, namely, a partially solvent-exposed salt bridge with the protonated N-terminus of the protein. Mutations were studied in which Asp 23 was substituted by alanine, asparagine, and nitrile alanine. Interactions with the N-terminus were probed by comparisons between proteins with a protonated and acetylated N-terminus. The mutants were all folded, and the structures were unchanged from wild type as judged by CD and 2-D NMR. The coupling free energy between the N-terminus and the side chain of Asp 23 measured through double-mutant cycle analysis was favorable and ranged from -0.7 to -1.7 kcal mol(-)(1), depending upon the set of mutants used. This relatively large coupling free energy for a surface salt bridge likely arises from geometric factors that reduce the entropy loss associated with salt-bridge formation and from structural relaxation in the mutants. Coupling free energies computed with continuum electrostatic calculations agreed well with the experimental values when full account was taken of all potential interactions, particularly those involving Asp 23 and the acetylated N-terminus as well as interactions with solvent. The measured and calculated coupling free energy decreased only slightly when the salt concentration was increased from 100 to 750 mM NaCl. The calculations suggest that the coupling free energy between D23 and the N-terminus measured through the experimental double-mutant cycle analysis is significantly smaller than the actual interaction free energy between the groups in the wild-type structure because of the inapplicability of assumptions frequently used to interpret double-mutant cycles.
منابع مشابه
Fusion and sequence analysis of the influenza A (H9N2) virus M2e and C-terminal fragment of Mycobacterium tuberculosis HSP70 (H37Rv)
The present study was aimed to construct a fusion plasmid harboring the extracellular domain of the influenza A M2-protein (M2e), which was fused to the N-terminus of the truncated HSP70 (HSP70359–610) molecule as a new approach for future vaccine research against influenza A. The amplified fragments, M2e and HSP70359-610 genes, were gel-purified. The products were then single digested with Bam...
متن کاملThe Importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation
Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction r...
متن کاملThe Importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation
Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction r...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 42 23 شماره
صفحات -
تاریخ انتشار 2003